FAIRCHILD

SEMICONDUCTOR TM

GTLP18T612 18-Bit LVTTL/GTLP Universal Bus Transceiver

General Description

The GTLP18T612 is an 18-bit universal bus transceiver which provides LVTTL to GTLP signal level translation. It allows for transparent, latched and clocked modes of data transfer. The device provides a high speed interface for cards operating at LVTTL logic levels and a backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transistor logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is Process, Voltage, and Temperature (PVT) compensated. Its function is similar to BTL or GTL but with different output levels and receiver thresholds. GTLP output LOW level is less than 0.5V, the output HIGH is 1.5V and the receiver threshold is 1.0V.

Features

Bidirectional interface between GTLP and LVTTL logic levels

May 1999

Revised July 2002

- Designed with edge rate control circuitry to reduce output noise on the GTLP port
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced BiCMOS technology
- Bushold data inputs on A port to eliminate the need for external pull-up resistors for unused inputs
- Power up/down and power off high impedance for live insertion
- Open drain on GTLP to support wired-or connection
- Flow through pinout optimizes PCB layout
- D-type flip-flop, latch and transparent data paths
- A Port source/sink –24mA/+24mA
- B Port sink +50mA
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Ordering Code:

Order Number	Package Number	Package Description
GTLP18T612G (Note 1)(Note 2)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
GTLP18T612MEA (Note 2)	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
GTLP18T612MTD (Note 2)	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 1: Ordering code "G" indicates Trays.

Note 2: Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

GTLP18T612

Connection	Diagrams
Pin Assign	ments for SSOP and TSSOP
OEAB LEAB A1 GND A2 A3 V _{CC} (3.3V) A4 A5 A6 GND ₀ * A7 A8 A9 A10 A11 A12 GND A11 A12 GND A13 A14 A15 V _{CC} (3.3V)	1 56 CEAB 2 55 CLKAB 3 54 B1 4 53 GND 5 52 B2 6 51 B3 7 50 V _{CCQ} (3.3V) 8 49 B4 9 48 B5 10 47 B6 11 46 GND 12 45 B7 13 44 B8 14 43 B9 15 42 B10 16 41 B11 17 40 B12 18 39 GND 19 38 B13 20 37 B14 21 36 B15 22 35 V _{REF}
A16	23 34 B16 24 33 B17 25 32 GND 26 31 B18 27 30 CLKBA 28 29 CEBA
Pin A	ssignments for FBGA
ЈН Ĝ F E D C B A	000000 000000 000000 000000 000000 00000

(Top Thru View)

Pin Descriptions

Pin Names	Description
OEAB	A-to-B Output Enable (Active LOW) (LVTTL Level)
OEBA	B-to-A Output Enable (Active LOW) (LVTTL Level)
CEAB	A-to-B Clock/LE Enable (Active LOW) (LVTTL Level)
CEBA	B-to-A Clock/LE Enable (Active LOW) (LVTTL Level)
LEAB	A-to-B Latch Enable (Transparent HIGH) (LVTTL Level)
LEBA	B-to-A Latch Enable (Transparent HIGH) (LVTTL Level)
V _{REF}	GTLP Input Threshold Reference Voltage
CLKAB	A-to-B Clock (LVTTL Level)
CLKBA	B-to-A Clock (LVTTL Level)
A1–A18	A-to-B Data Inputs or B-to-A 3-STATE Outputs
B1–B18	B-to-A Data Inputs or A-to-B Open Drain Outputs

FBGA Pin Assignments

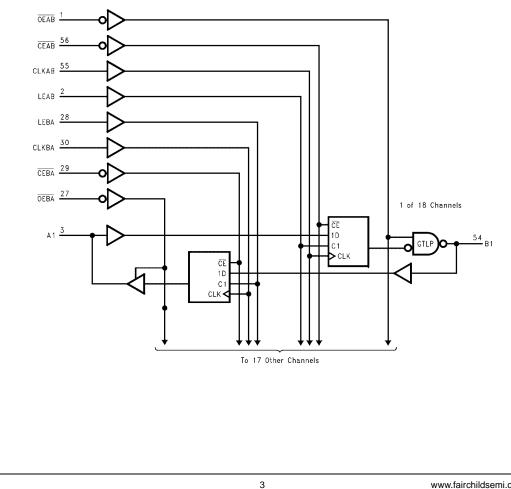
	1	2	3	4	5	6
Α	A ₂	A ₁	OEAB	CLKAB	B ₂	B ₁
В	A ₄	A ₃	LEAB	CEAB	B ₄	B ₃
С	A ₆	A ₅	V _{CC}	V _{CC}	B ₆	В ₅
D	A ₈	A ₇	GND	GND	B ₈	B ₇
E	A ₁₀	A ₉	GND	GND	B ₁₀	B ₉
F	A ₁₂	A ₁₁	GND	GND	B ₁₂	В ₁₁
G	A ₁₄	A ₁₃	V _{CC}	V _{REF}	B ₁₄	B ₁₃
н	A ₁₆	A ₁₅	OEBA	CEBA	B ₁₆	B ₁₅
J	A ₁₈	A ₁₇	LEBA	CLKBA	B ₁₈	B ₁₇

Functional Description

The GTLP18T612 is an 18 bit registered transceiver containing D-type flip-flop, latch and transparent modes of operation for the data path. Data flow in each direction is controlled by the clock enables (\overline{CEAB} and \overline{CEBA}), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA) and output enables (OEAB and OEBA). The clock enables (CEAB and CEBA) and the output enables (OEAB and OEBA) control the 18 bits of data for the A-to-B and B-to-A directions respectively.

For A-to-B data flow, when CEAB is LOW, the device operates on the LOW-to-HIGH transition of CLKAB for the flipflop and on the HIGH-to-LOW transition of LEAB for the latch path. That is, if CEAB is LOW and LEAB is LOW the A data is latched regardless as to the state of CLKAB (HIGH or LOW) and if LEAB is HIGH the device is in transparent mode. When OEAB is LOW the outputs are active. When OEAB is HIGH the outputs are HIGH impedance. The data flow of B-to-A is similar except that CEBA, OEBA, LEBA, and CLKBA are used.

Truth Table


(Nata 2)

	li	nputs			Output	Mode
CEAB	OEAB	LEAB	CLKAB	Α	В	
Х	Н	Х	Х	Х	Z	Latched
L	L	L	Н	Х	B ₀ (Note 4)	Storage
L	L	L	L	Х	B ₀ (Note 5)	of A Data
Х	L	Н	Х	L	L	Transparent
Х	L	н	Х	Н	н	
L	L	L	Ŷ	L	L	Clocked
L	L	L	\uparrow	Н	н	Storage
						of A Data
Н	L	L	Х	Х	B ₀ (Note 5)	Clock Inhibit

GTLP18T612

Note 3: A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{\mathsf{OEBA}}$, LEBA, CLKBA, and $\overline{\mathsf{CEBA}}$.

Note 4: Output level before the indicated steady state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW. Note 5: Output level before the indicated steady-state input conditions were established.

Logic Diagram

Absolute Maximum Ratings(Note 6)

	_	Conditions (Note 8)
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 8)
DC Input Voltage (VI)	-0.5V to +4.6V	Supply Voltage V _{CC} /V _{CCQ}
DC Output Voltage (V _O)		Bus Termination Voltage (V_{TT})
Outputs 3-STATE	-0.5V to +4.6V	GTLP
Outputs Active (Note 7)	-0.5V to V _{CC} + 0.5V	V _{REF}
DC Output Sink Current into		Input Voltage (V _I)
A Port I _{OL}	48 mA	on A Port and Control Pins
DC Output Source Current fro	om	on B Port
A Port I _{OH}	–48 mA	HIGH Level Output Current (I _{OH})
DC Output Sink Current into		A Port
B Port in the LOW State, IC	DL 100 mA	LOW Level Output Current (I _{OL})
DC Input Diode Current (IIK)		A Port
$V_{I} < 0V$	–50 mA	B Port
DC Output Diode Current (IOI	<)	Operating Temperature (T _A)
$V_{O} < 0V$	–50 mA	Note 6: Absolute Maximum continuous rati
$V_{O} > V_{CC}$	+50 mA	which damage to the device may occur. Ex conditions beyond those indicated may adv
ESD Performance	>2000V	Functional operation under absolute maximized.
Storage Temperature (T_{STG})	-65°C to +150°C	Implied. Note 7: I _O Absolute Maximum Rating must b

+50 mA $-40^{\circ}C$ to $+85^{\circ}C$ ratings are those values beyond Exposure to these conditions or adversely affect device reliability. naximum rated conditions in not imp

Note 7: I_{O} Absolute Maximum Rating must be observed. Note 8: Unused inputs must be held HIGH or LOW.

Recommended Operating

3.15V to 3.45V

1.47V to 1.53V 0.98V to 1.02V

0.0V to 3.45V

0.0V to 3.45V

–24 mA

+24 mA

DC Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range, $V_{REF} = 1.0V$ (unless otherwise noted).

	Symbol	Test Condition	IS	Min	Typ (Note 9)	Мах	Units	
V _{IH}	B Port			V _{REF} +0.05		V _{TT}		
	Others			2.0			V	
VIL	B Port			0.0		$V_{\text{REF}} - 0.05$		
	Others					0.8	V	
V _{REF}	GTLP (Note 10)				1.0		v	
	GTL				0.8		v	
V _{IK}		V _{CC} = 3.15V	I _I = -18 mA			-1.2	V	
V _{OH}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 11)	I _{OH} = -100 μA	V _{CC} -0.2				
		V _{CC} = 3.15V	I _{OH} = -8 mA	2.4			V	
			I _{OH} = -24mA	2.0				
V _{OL}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 11)	I _{OL} = 100 μA			0.2	V	
		V _{CC} = 3.15V	$I_{OL} = 24mA$			0.5	v	
B Port		V _{CC} = 3.15V	I _{OL} = 40 mA			0.40	v	
		I _{OL} = 50 mA				0.55	v	
lı	Control Pins	V _{CC} = Min to Max (Note 11)	$V_I = 3.45V \text{ or } 0V$			±5	μA	
	A Port	$V_{CC} = 3.45V$	$V_I = 0V$			-10	μA	
			$V_1 = 3.45$			10	μА	
	B Port	V _{CC} = 3.45V	$V_I = V_{CC}$			5	μA	
			$V_I = 0$			-5	μА	
I _{OFF}	A Port and Control Pins	$V_{CC} = 0$	V_1 or $V_0 = 0$ to 3.45V			30	μA	
I _{I(hold)}	A Port	V _{CC} = 3.15V	$V_{I} = 0.8V$	75			۸	
			$V_{I} = 2.0V$			-75	μA	
I _{OZH}	A Port	$V_{CC} = 3.45V$	V _O = 3.45			10	μA	
	B Port	1	V _O = 1.5V			5	μΑ	
I _{OZL}	A Port	$V_{CC} = 3.45V$	$V_0 = 0V$			-10	μA	
	B Port	1	$V_{O} = 0.55V$			-5	μА	
ICC	A or B Ports	$V_{CC} = 3.45V$	Outputs HIGH		30	40		
(V_{CC}/V_{CCQ})		$I_{O} = 0$	Outputs LOW		30	40	mA	
		$V_I = V_{CC}$ or GND	Outputs Disabled		30	45		

DC Electrical Characteristics (Continued)

Symbol		Test Condition	Test Conditions		Typ (Note 9)	Max	Units
∆I _{CC} (Note 12)	A Port and Control Pins	$V_{CC} = 3.45V$, A or Control Inputs at V_{CC} or GND	One Input at 2.7V		0	2	mA
Ci	Control Pins		$V_I = V_{CC} \text{ or } 0$		6		
	A Port		$V_I = V_{CC} \text{ or } 0$		7.5		pF
	B Port		$V_I = V_{CC} \text{ or } 0$		9.0		

Note 9: All typical values are at V_{CC} = 3.3V, V_{CCQ} = 3.3V, and T_A = 25 ^{\circ}C.

Note 10: GTLP V_{REF} and V_{TT} are specified to 2% tolerance since signal integrity and noise margin can be significantly degraded if these supplies are noisy. In addition, V_{TT} and Rterm can be adjusted beyond the recommended operating conditions to accommodate backplane impedances other than 50 Ω , but must remain within the boundaries of the DC Absolute Maximum ratings. Similarly V_{REF} can be adjusted to optimize noise margin.

Note 11: For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. Note 12: This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

AC Operating Requirements

Over recommended ranges of supply voltage and operating free-air temperature, V_{REF} = 1.0V (unless otherwise noted).

	Symbol	Test Conditions	Min	Max	Unit
f _{MAX}	Maximum Clock Frequency		175		MHz
t _{WIDTH}	Pulse Duration	LEAB or LEBA HIGH	3.0		
		CLKAB or CLKBA HIGH or LOW	3.0		ns
t _{SU}	Setup Time	A before CLKAB↑	1.1		
		B before CLKBA↑	3.0		
	A before LEAB	1.1		ns	
	B before LEBA	2.7			
		CEAB before CLKAB↑	1.2		
		CEBA before CLKBA↑	1.4		
t _{HOLD}	Hold Time	A after CLKAB↑	0.0		
		B after CLKBA↑	0.0		
	A after LEAB	0.8			
	B after LEBA	0.0		ns	
		CEAB after CLKAB [↑]	1.0		1
		CEBA after CLKBA↑	1.9		1

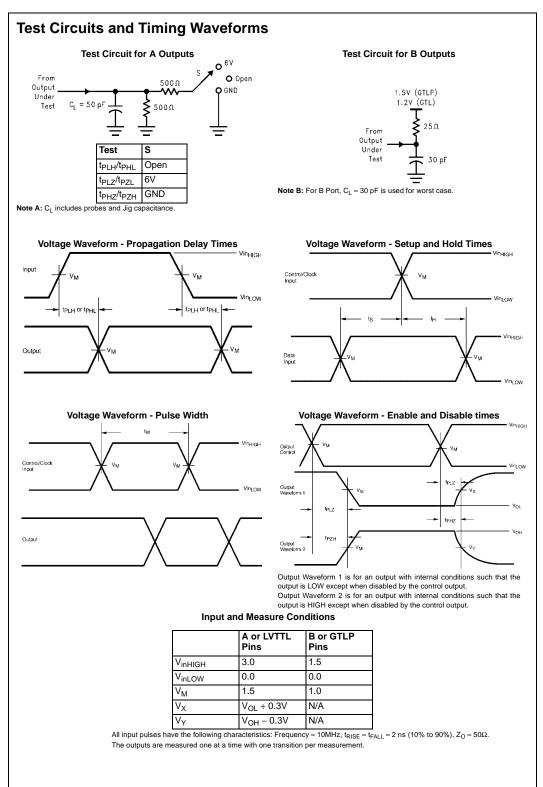
AC Electrical Characteristics

Over recommended range of supply voltage and operating free-air temperature, $V_{REF} = 1.0V$ (unless otherwise noted). $C_1 = 30 \text{ pF}$ for B Port and $C_1 = 50 \text{ pF}$ for A Port

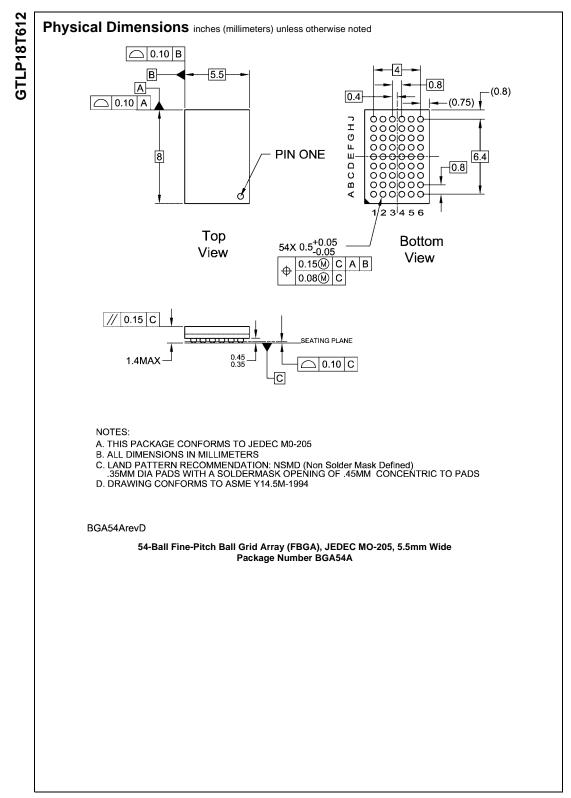
Symbol	From	То	Min	Тур	Max	Unit
	(Input)	(Output)		(Note 13)		
t _{PLH}	A	В	2.1	4.1	6.3	ns
t _{PHL}			1.0	2.7	4.4	110
t _{PLH}	LEAB	В	2.2	4.2	6.3	
t _{PHL}			1.0	2.4	4.2	ns
t _{PLH}	CLKAB	В	2.2	4.4	6.5	20
t _{PHL}			1.0	2.5	4.4	ns
t _{PLH}	OEAB	В	2.0	3.8	5.6	
t _{PHL}			1.0	2.6	4.3	ns
t _{RISE}	Transition Time, B Ou	tputs (20% to 80%)		3.1		ns
t _{FALL}	Transition Time, B Ou	tputs (20% to 80%)		2.1		115
t _{PLH}	В	А	1.8	3.8	5.8	20
t _{PHL}			1.8	3.8	5.8	ns
t _{PLH}	LEBA	А	0.3	2.2	4.6	ns
t _{PHL}			0.4	2.4	4.6	115
t _{PLH}	CLKBA	А	0.5	2.4	4.6	ns
t _{PHL}			0.6	2.6	4.6	115
t _{PZH} , t _{PZL}	OEBA	А	0.3	2.7	5.2	
t _{PHZ} , t _{PLZ}			0.3	2.5	5.2	ns

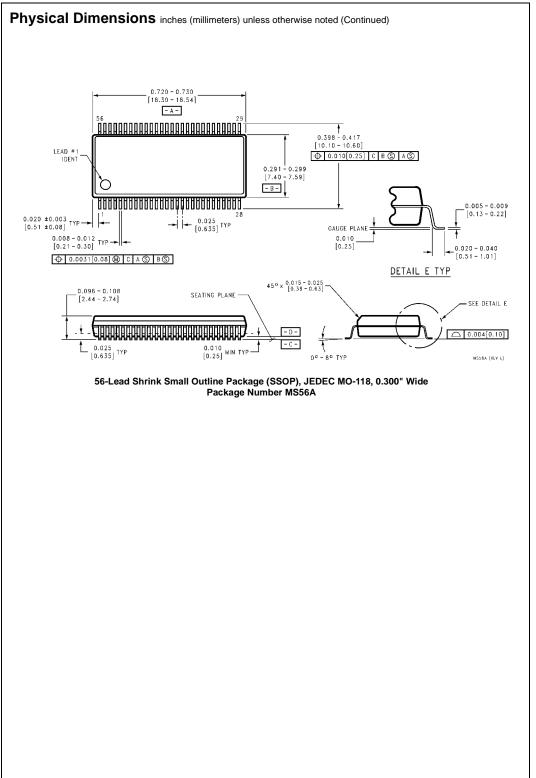
Note 13: All typical values are at V_{CC} = 3.3V, and T_A = 25°C.

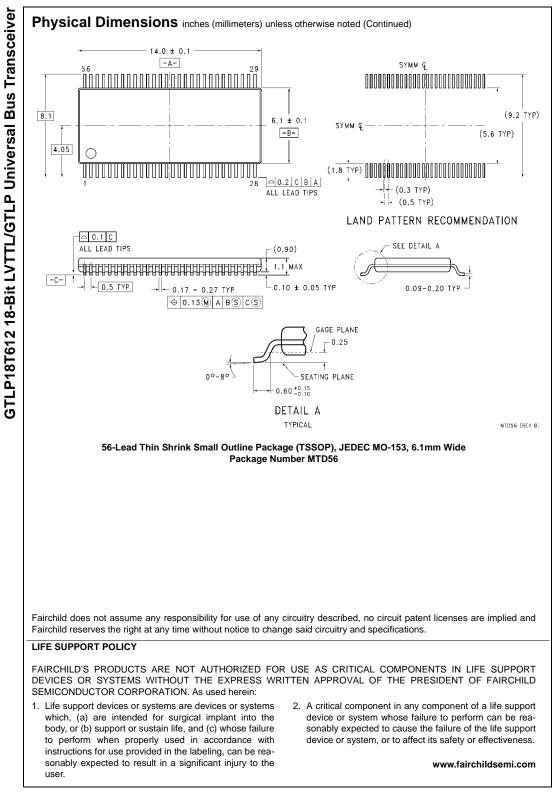
Extended Electrical Characteristics


Over recommended ranges of supply voltage and operating free-air temperature V_{REF} = 1.0V (unless otherwise noted). C_{I} = 30 pF for B Port and C_{I} = 50 pF for A Port.

Symbol	From (Input)	To (Output)	Min	Typ (Note 13)	Max	Unit
t _{OSLH} (Note 14)	A	B		0.8	1.0	ns
t _{OSHL} (Note 14)		_		0.3	0.5	ns
t _{PV(HL)} (Note 15)(Note 16)	A	В			0.8	ns
t _{OSLH} (Note 14)	CLKAB	В		0.9	1.0	ns
t _{OSHL} (Note 14)				0.3	0.5	ns
t _{PV(HL)} (Note 15)(Note 16)	CLKAB	В			0.8	ns
t _{OSLH} (Note 14)	В	A		0.7	1.0	ns
t _{OSHL} (Note 14)				0.6	1.0	ns
t _{OST} (Note 14)	В	A		0.7	1.1	ns
t _{PV} (Note 15)	В	A			1.5	ns
t _{OSLH} (Note 14)	CLKAB	A		0.5	1.0	ns
t _{OSHL} (Note 14)				0.6	1.0	ns
t _{OST} (Note 14)	CLKAB	A		1.1	1.2	ns
t _{PV} (Note 15)	CLKAB	A			1.5	ns


Note 14: t_{OSHL}/t_{OSLH} and t_{OST} - Output to output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs within the same packaged device. The specifications are given for specific worst case V_{CC} and temperature and apply to any outputs witching in the same direction either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}) or in opposite directions both HL and LH (t_{OST}). This parameter is guaranteed by design and statistical process distribution. Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.


Note 15: t_{PV} - Part to part skew is defined as the absolute value of the difference between the actual propagation delay for all outputs from device to device. The parameter is specified for a specific worst case V_{CC} and temperature. This parameter is guaranteed by design and statistical process distribution. Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.


Note 16: Due to the open drain structure on GTLP outputs t_{OST} and $t_{PV(LH)}$ in the A-to-B direction are not specified. Skew on these paths is dependent on the V_{TT} and R_T values on the backplane.

GTLP18T612

